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NOMENC LATURE

Symbol Description Symbol Description
= Distance from left support to stop I Moment of inertia
b Distance from right support to stop Ip Impact
dj Inside diameter of tube Kp Stiffness constant for beam
do Outside diameter of tube Kg Spring stiffness constant
€, e, ©;, € Distance between stop and beam M "Added" mass of fluid
£(x), £(€) Distribution of external force; nor- M,, M, Constants computed by Eqs. 16 and 26
malized to give [L f(x) dx = 4 Ng Strouhal number
- = : Q.Q Dimensionless forcing function
ki, ki, kn Eigenvalues for beam vibration
R Mean amplitude of dimensionless
1 Length of beam ! : Fol?
m Mass per unit length of beam forcin g i
|, S, Gns On Normal coordinates u Crossflow velocity
T Dimensionless distance Uy Mean crossflow velocity
i Time v Shearing force
u Translational velocity of moving beam a, B Dimensionless damping coefficients
vo Dimensionless initial velocity ¢, & & Dimensionless distance between
vy Dimensionless velocity at contact beerrondbtops
with stop g Perturbation variable
w, W Dimensionless displacement Cn» En Modal damping factor
wo Dimensionless initial displacement o Perturbation variable
W Displacement at instant beam strikes A Modulus of internal damping
tiesion 3 Dimensionless axial coordinate
%= Axial coordinate g i dens s
Y Transverse displacement 2 Bending stress
L loilialdisplac tat : Dimensionless time
Yo Ll oot To Dimensionless time when the beam
z Distance from neutral axis to fiber passes the natural equilibrium
A(7) Dimensionless amplitude Position
C Modulus of external damping e I:;:;ke::i;r;lesstzr:ime wheattherbeam,
C1, Gz, Cs Constants computed by Eqs. 30 and 35 Te Dimensionless time when the beam
Cy Lift coefficient reaches maximum deflection
Cni Constants computed by Eqgs. 72 ™ Dimensionless time when the beam
Co Bendi stress coefficient depazcalconystop
Cy Shearing force coefficient Y _ Pexcingixeduency
C1 Impact coefficient Pn, Pn Normal modes
Dc(A), Ds(A), Ec(A), V() Phase angle
Eg(A), Fc(A), Fg(A) Constants computed by Eqs, 46 0 Dimensionless forcing frequency
E Young's modulus of elasticity Qn, En Dimensionless natural frequencies of
El Flexural rigidity i kg o
F(x,t) External force per unit length
Fy Mean amplitude of distributed

external force
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VIBRATION OF A BEAM
WITH MOTION-CONSTRAINT STOPS

by

DS Chen i GrSisRosenbery,
and M. W. Wambsganss

ABSTRACT

As the result of clearances imposed by manufactur-
ing practices and design considerations, reactor fuel pins
are susceptible to impacting with their supporting grid mem-
bers, and heat-exchanger tubes can be expected to contact
flow-directing baffles, which also serve as their intermedi-
ate supports. This intermittent contact will affect the vibra-
tional characteristics and response of the component. To
gain insight into the dynamics of the phenomenon, atheoreti-
cal analysis of a sinusoidally force-excited beam with motion-
limiting stops is performed and a method of solution is pre-
sented. The "gross'" motion is obtained through reduction of
the system to abilinear vibrating model. Information obtained
from this model is used ina classical modal analysis in which
many modes are included to give the dynamic stresses and
impact in explicit form. Numerical results are given, and the
character of impact is also investigated. The method is ap-
plied to study the tube-baffle interactibn induced by cross-
flow in the EBR-II superheater.

EVINTRODUCTION

Various internal components of reactors and associated plant equip-
ment, such as fuel, control rods, and heat-exchanger tubes, are long, slender
members that derive their lateral support from intermittent, grid-type
spacers or, with heat-exchanger tubes, baffle plates. Manufacturing and
fabrication practices require a minimum clearance between component parts.
Therefore, vibrations make the components susceptible to impacting and
rubbing with the support, which could cause them to fail structurally by
wear and fretting. Such impacting affects a component's vibrational char-
acteristics thus further complicating analysis. To gain insight into the
dynamic response of reactor system components that are subject to impact-
ing with support members, a theoretical analysis ofa simply-supported beam
with motion-limiting stops was undertaken. The objectives of the study were
to determine the dynamic stresses in the beam and impact at the stop and to
investigate the effects of various parameters on the response of the beam.



pts have been made to determine the impact and the
ass strikes a beam;l'3 many of the results are

described in a book on impact by Goldsmith,4 However, an important in-

m involving a vibrating beam striking a stop was untouched

ous dynamic-landing load problems were
lanes. Useful methods of analysis®
termining transient landing stresses in

d on the assumption that the landing im-
structural flexibility. This avoids
those resulting from coupling of the airplane

structure and the nonlinear properties of the landing gear of the landplane.
More recently, Deas’ studied the stresses in a beam during impact with a

stop. He obtained the bending stress for impact of the free end of a free-
Nevertheless, there is still a lack of published

the impact and the dynamic response of a beam

Numerous attem
stresses produced when a m

verse proble
until some 20 years ago when seri
ge landplanes and seap

6

encountered in lar
are available for the designer in de
airplanes, but the methods are base
pact force is independent of the airplane
inherent complexities such as

pinned beam on a stop.

information regarding
vibrating between two deflection resistors or stops.

Vibration of a beam with motion-limiting stops is complicated by

the fact that the vibration is nonlinear in nature. The nonlinearity is due to

the constraint imposed on the motion and indentation at the stop. If the local
deformation at the contact area, as described by the Hertz law,® is incor-
porated in the theory, it will be necessary to solve a nonlinear integral
equation or to analyze the response of a beam on a nonlinear spring_q To
gain insight, several approximations are made. The local deformation is
neglected, and a rigid stop is assumed; from the solution of a flying beam
striking a stop, we 'find that this assumption is justified. Then a one-mode
approximation is used to investigate the steady-state response of the beam.
After t'he one-mode response is obtained, more modes are included in the
analysis to more accurately determine dynamic stresses and impact.

II. MATHEMATICAL FORMULATION AND
METHOD OF SOLUTION

T Thi equation of motion for a vibrating beam of uniform cross sectionA
uding the effects of damping and distributed load is assumed to be ,

'y d° 2
B2yl oY e
doxt ox?ot BG P F(x,t). (1)

iz;a;izyolfnf}:‘:1zsasnd .shear. deformation are neglected. The theory of vibra-

s Comditionsoocfmsted impact can be developed in a general manner for

e uppo.rt. Here, a simply-supported beam, as illustrated
; en as a vehicle to demonstrate the method of analysis,



e
e, _l '__[ I Fig. 1
L T T == X Simply-supported Beam with
. T 4 Motion~constraint Stops. ANL
TT Neg. No. 113-3286.
a t b
’

The boundary conditions for a simply-supported beam are

y(0,t) 0; y(dit) = 0:

2 2
- ST T
dx2 dx2

Because the beam is constrained by the stops at x = a, an additional

condition is required at that section; neglecting local deformation at the

contact point, we can write
-e; < y(a,t) < ey.
Assume that the initial conditions are
y(x,0) = yo(x)
and

Oy ;
2 (x,0) = yolx)

(3)

Before we proceed with the analysis, it is desirable to express the

terms in dimensionless form; accordingly we put

EI \!/2 i i
e=x/uor=i(TH) . - g
T 1/2
w=y/l o= K(m) . W= Yo/
L
1/2 1/2
i m :
a0 P = C(EIm) A SV = (E—I> Yot,

1/2
gl = ei/L, aig = (%) wh?.



BRI 15 reduced to

In dimensionless form,
g i gl (6)
W = -
where
2
o 2 2 o,
W . SM0a T ik
i b§4+“o§“b7+a e T

The operator L is defined in the domain

Bhib e, LoC i (7)

with the following boundary and initial conditions:

w(0,T) = EZE(O,'r) = 0,

S (L= o_?(“) =0,

w(E,0) = wo(E),

and
(g O) = A (g)
T 4 0 £

The problem is to find w(g, T) which satisfies E
; s. 6 and 8-
is in the domain of L. : s -

With no loss of generality, it is assumed that
-5 <w(r,0) < g
and ¥
(11)
vo(r) > 0
Th i i
theesl.::obllern ca_x} b¢ descr1be<i in two regimes. If the beam does not strike
p, i.e., -§ < w(r,7) < &, Eq. 9 can be ignored. After the beam strikes

the stop, i = &
continupy 1-2,, w(r,7) = €, or w(r,T) = -§, the beam vibrates as a two-span
ous beam. These two regimes are described as follows:



l. For -5 <w(r,7) < g

B = 6
and
w(0,7) = gz_g‘;{(o,’f) =00, W
wi) = T <o,
w(E,0) = wo(E), %
and
dw
2 (£,0) = vo(®). :

(12)

(13)

The undamped system constitutes a self-adjoint problem. Several methods
are available for analytical solution, such as the normal-mode method,

Green's function, or finite transform.

The solution is summarized as follows:

nZ.n.Z

Y an(T)eL(E)
T (14)

S S

= BInNnTIE

where q,, is the normal coordinate, which is the solution of the following

Natural frequencies Qn
Displacement w(E, 1)
T
Normal modes (pn(§)
equations:
szn o4n
72 + 2Cnlin T + Qhan =
(0) = —— [ wo(®eq(8) dE
9n Mn Y 0 n v
and

0 o [ ve(e,(0 ot

i [ eEen(® at,

EN

1l
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where
o i
&5 6
(16)
and
1
My = 2 dE
n /; ‘Pn(g)
2. For w(r,'r) = -§, OF W(T,T) = 3
in Eqs. 14, we can find the time when

From the displacement equation
let it be designated as Ts. As soon as the beam

n at the stop has to be imposed on the

the beam strikes the stop;
are taken as the initial condi-

strikes the stop, an additional conditio
system. The displacement and velocity at Tg
tions of the second regime. Therefore, we can write

Lw(€7) = Q(&7) e
and
Al 5= g—zg‘;—v(o,ﬂ') = (@
winn) = T2 = o,
w(r,T) = € or - &, \ (18)
w(E Ts) = Wl(g),
and
ow
P T
where
wy(€) = ZKiQn(Ts)‘Pn(g)
and
0 (19)
An
Vl(g) = z (Ts)cpn(g)



Equations 17 and 18 describe a linear system with nonhomogeneous boundary
conditions. To eliminate these conditions, let

w(g 1) = wW(g 1) + wi(E). (20)
If we substitute Eq. 20 into Eqgs.
system description becomes

17-19 and use the properties of w;(E), the

Lw(E, 1) = Q(E,7) (21)
and
*w )
w(0,1) = 8?(0,’1‘) = 0,
o
0 = 2?”;’(1,7) 416,
w(r,T) = 0, L (22)
Sl EGE =0,
and
%i:(rsm)IT:Ts = vi(8),
where
Q(g 1) = (22.a)

Q(§, T) 2 ZO%Qn(Ts)‘Pn(E)~

Again we obtain a self-adjoint system for the undamped problem. The
normal-mode method of solution is suitable for solving this system. On
representing wW(E, T) by

W(E 1) = Yan(m)en(8), (23)
n
we obtain the following results:
Natural frequencies: Hn = l_(f1
Displacement: wlE )= zan(‘r)an(g) + w) ()
n
(24)

1,0 £ (Contd.)

13



14

(Contd.)
4 sin (Enl‘) Eoh E g)‘ R=RFi=n (24)
Normal modes: @n = sin (kn8) - nh (Enr) (kn
¥, = sin (_ﬁnr)(—cot[in(l - r)]sin [kn(§- r))
- cos[Ky(E- 1)) + cosh [ (E= r)]
+ coth[kp(1 - r)] sinh [1_<n(§' o))}, ni= E= 1,
where _k_r1 is the solution of
cot (kpr) - coth (knr) = -cot [Kp(1-1)] + coth [ (1 =] (25)
and
3
g LB AR, S I T =
2 + 2Galla o + Biin = 5T [ aE w9 et
qn(Ts) = 0,
Oan 1 1 =
= (15) = 5= [ ni(9F(8) a8,
" T > (26)
1 —_
M, = [ k(g ag,
and
e T
CRE J

From the displacement equation in Eqs. 24, we can find the time
Tp (measured from the time of contact) when the beam departs from the
stop. At this time, it reverts to regime 1. Hence we are able to find the
response of the beam at any time by using step-by-step analysis. However,
if a large number of modes are included, it is very tedious to study the

steady-state response by this method. Therefore, the following procedure
is followed to avoid complexities:

1. From a "first-mode approximation" (i.e., the beam is assumed

to respond as a system with a single degree of freedom), the
"gross" response of the beam is obtained.

With the information obtained from first-mode approximation,

more modes are included to find the dynamic stresses and
impact,



III. ONE-MODE APPROXIMATION

A, Reduction to a Bilinear Vibrating Model

A simply-supported beam with a symmetric stop at midspan is con-
€ = €. If only the first mode is taken, we obtain

sidered, i.e.

from Egs. 14 16, 20, 23, 24, and 26 the following results (see Fig. 2):

1
I‘—Z,el—

1. For-e<w(}1) <% 0s7Ts 74
w(E,T) = aqi(T)ei(E), T
w(E, ™) = ai(m)e.(E),
41 + 20,4 + Ka; = M_ll j;l Q(E, T, dE,
T (27)
al©) = 5 [ wol®e a8,
and
0(0) = g [ vol@ e,
2. Forw(3,7 = %5, 135 75 75+ Tp
w(E 1) = qi(Tei(E) + Ch("'s)‘Pl(E) h
w(g.1) = @(NFi(E),
q + 2616131 + (a1 = K/I—_ll j;l Q(g,7)p, dE,
dils) = 0, T (28)
; c'1(
al(Ts) = 9, dE,
and
6(5, T) = Q(E»T) = QI(Ts)Q%CPl(g)- J

155



q,(T)¢,(&)
v
s
(a) REGIME |
Fig. 2

Displacement of Beam Using One-mode
Approximation. ANL Neg. No. 113-3282.

OO qmw©

(b) REGIME 2

To incorporate Eqgs. 27 and 28 into one system, it is necessary
such that the normal coordinates

to have continuous conditions at T
q; and g, for the two regimes can be combined into one. To accomplish

= Ts

this, we define a new normal coordinate, q1(7), such that

Ch("'s) = Q1(Ts)

and (29)
d1(s) = ai(ms)
These conditions are satisfied by taking
= 1 1
ar) = C—Ch("') + ai(Ts),
1
where
fl Py dE
191
G5 - T N r G
=1 H
['#@as
0
also let
(e = Cm(e). J




Substituting Eqs. 30 into Eqs. 28, we obtain as the new system of equations
for w(,7) = te, 75 < T < 15 + T,

w(E,7) = [&(7) - au(7s)] §1(E) + ar(Ts)i(E), E)

w(E 1) = Gi(7)$.(E),

& -, = Q2 1 1
q + 2008, + O %‘%(Ts)(l = ?é) = == [ Qo, dEg,
Q CiM,; Jo T (31)

and

al(Ts) = qi(Tg). J
Assume the forcing function is periodic and of the form
Q(E,t) = Rf(E) cos Qr, (32)

where R is a constant and

1
fo f(EdE — 1,

Compare Egs. 27 with Eqs. 31, and observe that the normal coordinates
q; and q; are governed by the single equation

g + £1(4) + £,(q) = f3 cos Qr, . (33)
where
for |q] = ¢, £(d) = 204, )
f,(q) = leq,
and
f3(q) = CzR; % (34)
for |q| 2 ¢, £i(g) = 20,04,
f,(q) = Oi(q- e) + Ofe,
and
f3(q) = C3R; J

i
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and
e = 5/%(%),
[ (9)e(E) a8
c, = =2 : :
[ 4i(e) at
0
(35)
and
[ e(9m(e) at
Cy = =2 .
‘[151@1 dg
0
The displacement of the beam is characterized by q(T) .
2 for |q| s g
w(E, 1) = a(Tei(8), (36)

w(Eg 1) = Cyilq(7) - €] 51(5) + ep1(E), fox |q| =es

Equation 33 is the same as the equation of motion of a unit mass
on a bilinear spring excited by a piecewise linear force as shown in Fig. 3,

B. Van der Pol and Krylov-
Bogoliubov Methods

fa(q)

When q < ¢, the system
described by Eq. 33 is linear and
the solution will be cosinusoidal in
nature. For q > ¢, it is reasonable
to assume that the trigonometric
character of response will be pre-
served. Therefore the Van der Pol
and Krylov-Bogoliubov Methods!?
are applicable for obtaining the

Fig. 3. Restoring Force and Its Equivalent solution. Let the solution to
System. ANL Neg. No. 113-3278. Egs. 33 and 34 be approximated by
q(1) = A(7) cos 8, (37)
where

0 = Qr- y(7) (38)



and A(T) and (1) are slowly-varying functions of 7. Then,
4 = A(7) cos 8 - QA(T) sin 6 + }(7)A(T) sin 6. (39)

Let us further assume, as a first approximation, that

A(7) cos 8+ Y(T)A(T) sin 8 = 0; (40)
then

g = -QA(T) sin 8 (41)
and

d = -QA(T) sin 8 - QPA(T) cos 8 + QA(T)¥(7) cos 6. (42)

Substitution of Eq. 42 into Eq. 33 gives
-QA sin 6 - (PA cos 6+ QA{ cos 8+ £,(§) + £,(q) = f3(q) cos Qr. (43)

Multiplying Eq. 40 by Q sin 6 and Eq. 43 by cos 6 and adding, and then
averaging over one cycle of 8, we obtain

: QZA 1 r2m 1 e
Ve AR R =
Qy o aE £,(4) cos ©d6 + Zﬂf f,(q) cos 6 d6
0 ()
1 2T
= Z_T?/ f3(q) cos 6 cos (6+ ) de. (44)
0 -

Similarly, multiplying Eq. 40 by Q cos 8 and Eq. 43 by sin 8 and adding, and
then averaging over one cycle of 6, gives

- 1 27 4 21
-QA + — £,(q) sin ©d6 + Z_Trf f,(q) sin © d6
0

2T
()
2m
- 'zin £3(q) sin © cos (8 + ¥) d8. (45)
0
If we let
1 2m
D o(A)- = ;Tﬁfo £,(q) cos 8 d8,
i o (46)
B () e —en_ﬂfo f1(q) sin 6 db, (Contd.)

19
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1 2™ (Contd.)
()= g b f,(q) cos ©d§, (46)
1 2™ A
o ()R =il f,(q) sin 6 de,
1 el 6+ y) de,
o LT RN f,(q) cos O cos (
M j; s(a
and
. m i 8
e f sin 6 cos (6 + V) db,
Fg(a) = me sin foz () J
Eqgs. 44 and 45 become
20§ - 0°2 1 D () + Ec(4) = F(4) cos ¥
€
(47)

_an + QDs(A) + Eg(A) = Fg(A) sin ¢

Equations 47 may be regarded as a complete statement of the problem in
terms of A and Q. The analysis is valid for any type of system where
£1(4), £,(q), and f3(q) may have some nonlinear forms. For the bilinear
system described by Eqs. 33, the integrals of Eqs. 46 yield

B (A0,

Ec(A) = of— for A S<ie:

g de) sin 268,\ =
& _{(? e l)(ﬂf - (4) sec 6, + %Of sec 8,

_(52 - @) sin el} forsAN=Ne
. (48)
E (A) = o, r(Contd.)



R
() = Cz: for A < e, L(Contd.)
(48)
4R i ) n
e el i s >
nl:e(ca Cz)( g T3 26, )+ 4C2:| for A 2 ¢,
R
Pl = " for A = ¢,
and
--35(c-c)(el-lsinze)+ﬂc Tot k2
= TEE 3 2/\ 32 2 1 Aai2 oL €,
where 8 = cos™! (¢/A). Hence, Egs. 47 reduce to

20§ - @2+ Ec(A) = F(a) cos ¢
and : (49)

A
-20— + QD¢ (A) = Fg(A) sin ¢

The steady-state response is obtained from Eqs. 49 by setting A and \y equal

to zero. This gives

F(Ag) cos o

A
-QZTO + EC(AO)

and (50)
0D (Ao) = Fs(Ag) sin Yo
where the subscript o denotes steady-state values. From these two

equations, the following phase angle and amplitude-frequency relation are
obtained:

F (A0 [Ec(ag) - 32

tan 4y« — Fc(800Ds(A0) W
]

and

o[, -l ]

+ [ERa0 - F2(A0) () = O

Eil
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s, 51 reduce to the familiar form

If Ay < ¢ Eq
260
tan = =
-
(51.a)
and ’
(@ -ai + ageht - (S2)
1 141 A,
which is the steady-state reponseé of a spring mass system.
C. Stability Analysis
Let
A=A+
and ) (52)
V= W+,

where ( and 1) are small perturbations on the steady-state parameters.
Substituting Eqs. 52 into Eqs. 49 and neglecting higher-order terms, we
obtain

Zﬂ%ﬁ t Fe(Ao)(sin )7 + [EE(AO) = ﬁe - F¢(Ag) cos %] GR=0

and ()

1 - 1 . 1
20:@ + [Fs(Ao) sin yo- ODg(Ag)] ¢ - Fs(cos )N = 0

where
1 E Py,
Eaa) - 2 gP(xA)‘ :
AL
Fi(an) - Eeld)| .
oA =Ny
Fs(a) = °FS(A)I T (54)
A A - Ao’
and
LA °Ds(A)’
BA |,
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To examine the behavior of the small perturbations { and 1), let
C Ee)\‘r

and . (55)

M = ﬁe)\T

Substitution of Eqs. 55 into Egs. 53 yields

(ZQK% £ sin \vo)ﬁﬁ-(E'c—g-F:: cos %)E =0,

(-Fs cos o)1 +(2m-§ +Fg sin \yo-nD's) =50

The frequency equation is obtained by setting the determinant of the coeffi-
cientsof 1 and ( equal to zero; this yields

(2a)0)% + QMG + H = 0, (57)

where

C Fc inH
B = Zglﬂlﬂ (l - F_s) el F—S- GQDS
(58)

and
H = F. sin yo(eFg sin o - QeDg) + Fg cos Yo(eEL - @ - eFc cos )

For a given set of Q and A, obtained from Eq. 51, one can determine the
value of )\ from the characteristic equation, Eq. 57. It may be shown that

G > 0 for all A,. (59)

IfH = 0, one root of Eq. 57 is \; = 0, and the other is negative real; the
system is on the margin of the stable region. If H < 0, the eigenvalues

A; and ), are both real and AA; < 0; the system will be unstable, If H > 0,
the eigenvalues may be either real or complex-conjugate, but the real
part of both roots will be negative; therefore, the system is stable.



24

1V, IMPACT AND DYNAMIC STRESSES OF THE BEAM
From Eqs. 36, 37, and 41, we have for the steady-state response of

the one-mode approximation
=

w(g 1) = a(T)ei() for |q| = e
= Cilg- €)o1 + et for |q| = e,
q(1) = A cos (T - o), L (60)
and
J

a(t) = QA sin (QT- ¥o).

To study the stress and shear force responses of the beam, additional modes
must be included in the analysis to obtain sufficiently accurate results S Sihe
response will be characterized during a quarter of the period of the forcing
frequency. Let Ty, Ts, and Te be defined as the times when the beam passes
the natural equilibrium position, strikes the stop, and reaches the extreme

position, respectively; thus

a(m) = 0,
sl =,
) (61)
and
a(te) = 0O,
and
103 N
To = g3t Vo
= l P
T = a 2TT+%-COS X)’
0
\
62
and ( )
s _1_(2 )
e Q T+ o). J

L. 7o 1< 15 (Without striking the stop)

The informati
initi LONGEAT Sim = . .
nitial condition of this r To, of one-mode solution is taken as the

have egime. In Egs. 60 and 32, let 7' = T - To; we then



w(g'T|)|T'=o = q(To)p1(E),
(63)
V'V(§,T')|T.=0 = g(To) e (E),
and
Q(g, 1) = RE(E) cos QT = RE(E) cos [Q(T' + 7)) = Q(E, ). (64)

Because the beam does not strike the stop, the system is described by
Egs. 12-16. In terms of T', using Eqs. 63 as the initial conditions and
Eqs. 64 as the forcing function, one obtains the solution

w(e, 1) = Tai(r)e(8), 05 ST T, (65)
b 3
where
et
qi(™) = [Oli sin( VI-Gay7) + 83 cos (VI-Coyr) ] o T
hj
+—R cos [Q(T'+ 7o) - ei],
i
A B P DiRasin (AT - ) + Aonﬁix]v
P aml TR )
hj
B; = -— Rcos (7 - 61), »
e P L (66)

p. = [(ch- ) + 4cickel)”?,

B P00
-
and
1
b = 5 [, (99(9) 4t ]

2. Tg s 7= T (In contact with stop)

The displacement and velocity of the first regime at 7 = Tg will be
taken as the initial conditions for the second regime, At T = Tg, i.e,,

= Tg ~ To,
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1 = '(Ts = TO)‘pl(g)
w(g'T)lT':Ts'To qu
(67)
and
X = 34.(1s - To)o;(E)
W(E'T'HT':TS-TO Ziql s i
M %
In this regime, the motion is described by Egs. 20-26. If we leturi TN
i.e.,
T o= T o- (TS = Tals (68)
the initial conditions for W(E, T") can be written
w(E,0) = 0
and , (69)
W(E,0) = X g(s - To)o;(E)
1
and the forcing function becomes
(70)

Q(g") = Ri(8) cos [a(1 +75)] - E Oa;(T - To)oy(E).

If we use Eqs. 69 and 70 and follow the analysis given in Section II, the

solution in the second regime is

(8),

w(E, ") = Z.C—ii('r")‘si(g) aF Zqi(fs = TO)CPI

1

where

ai('r") = [&i sin (v1 - &f_)iﬂ'") + Ei cos( V1 - E?(_)i‘r")J e_ziai'r”

B
+£R cos [Q(T' +7,) - 6],

@ = hj : Si® i £
CA @ﬁl [gi+§i RQ sin (Q1s - 8;) + Qinisi}

(71)

(72)
(Contd.)



gi =

and

Cni

1/2
s

greem—

- o) + agnn?)

1 —
. [ 0% as,

z(.ln( " TO)Cni!
n

2|~

1

=

z Cniqn(Ts - TO)O;:
1n

2l

= [ 2959 at.

The motion of the beam is completely described in Egs.

(Contd.)
(72)

7
65 and 71.

If we use the stress-displacement relation from the theory of elasticity,
the dynamic bending stress o and shearing for::e V are given by

E
o(&.1) = ColE N ¢
and ! (@3]
El
WillE 7] = CV(g'T):z’e
where
ot g = 1= 05 0r 0= T4= Tg 5. To
Cq = L5aman® |
Rl t i il
1
and P (74)
I

Cv = ~Fa; (el ()

27
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for Ts £ TS Tes or 0= TS T =TS,
Cg = l[zﬁi('r")c—ni'(é) +2a4(7s - To)9} (€)
el i
1

T; (75)

and

m

2% l{zai<w)ag"<g>+zqi<xs—Tom (g)} !

i i idered.
and z is the distance between the neutral axis and the point consi
The impact at the stop is

(=D for 0is ‘T <" Tc. = Ty
. - (76)
an

L(r) = V(E™) | 4+ V(§™)] . for 05 ™ £ Te - 7

g

For a midspan stop, Eq. 76 reduces to

EI il
I = CI? €, L

where

Gre 0, Of<Smili<SrSR=Sr
(78)
= e R L SR )

V. NUMERICAL RESULTS

The theory is presented for a sim

ply-supported beam. If the natural
frequencies,

normal modes, and other related parameters of the simply-
supported case are replaced by those corresponding to other end conditions
(see Appendix A), the results are applicable. Numerical results are given
for both the simply-supported and the built-in beams,

The steady-state résponses to a uniformly distributed load L) = 1]

have .been computed using Egs. 51 and are given in Figs. 4-7. When the
amplitude R/e of the forcing functj

S q/e s. 1; this is the same as that of a vibrating beam without stops.
When R/e 1S very large, the re

sponse is like a two-span continuous beam.



For the intermediate value of amplitude R/e, the response possesses the
jump phenomenon. This occurs when the driving frequency is in the range
Q, £ Q < Q, and is illustrated in Figs. 6 and 7, where the amplitude follows
the curve ABC, then jumps down to E, and then on to F as the forcing
frequency is increased; conversely, when the forcing frequency is slowly
decreased, the jump occurs at D. The nondimensional amplitude, w(E, ),
is computed by substituting the normal coordinate, g, obtained from

Fig. 4 or 5, into Eq. 36 and using the appropriate normal mode as given
in Appendix A.
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Fig. 4. Amplitude-response Curves of a Fig. 5. Amplitude-response Curves of a Built-

Simply-supported Beam for a
Damping Ratio of 0.1 (€ = e/%;
see Egs. 36 for the displace-
ment of the beam), ANL Neg.
No. 113-3280.

in Beam for a Damping Ratio of 0.1
(e = 0.81 e/%; see Eqs. 36 for the
displacement of the beam). ANL
Neg. No. 113-3275.
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Fig. 6. Phase-response Curve of a
Simply -supported Beam for
R/E =50 and a Damping
Ratio of 0.1 (e = e/%).
ANL Neg. No. 113-3289.
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Fig. 1. Phase-response Curve of a

Built-in Beam for R/€ =
500 and a Damping Ratio
of 0.1 (€ = 0.81 e/p).

ANL Neg. No. 113-3285.
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i i 73. The shearing force at
: are given in Egs.
The dynamic strestszs lamgd s o T 8 and DUEn
= 1 a = 2 2 > X
=3 ng stresses el
L bfmdl agt the extreme position. Those are the maximum st ;
e

SR
=2 ving frequency.

they are quite sensitive to the dri

VIBRATION
AMPLITUDE, q/€

BENDING STRESS COEFFICIENT, Co

SHEARING FORCE
COEFFICIENT, Gy
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NONDIMENSIONAL FORCING FREQUENCY, &
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NONDIMENSIONAL FORCING FREQUENCY, a

Fig. 8 Fig. 9
Amplitude Response and Shearing Force Bending Stresses of a Simply -supported
Curves of a Simply-supported Beam Beam for R/e = 1000 and Z; = 0.01
for R/€ = 1000 and &y = 0,01 (€ = e/%). ANL Neg. No. 113-3276.

(e = e/%). ANL Neg, No. 113-3279,

VI. CHARACTERISTICS OF THE IMPACT

As indicated earlier, the analysis is based on the assumption that
there is no relative motion between the beam and the stop at the contact
point. In reality, the two bodies suffer a relative indentation in the vicinity
of the impact point in addition to bulk deformations of the objects as a
whole. For the elastic indentation, the Hertz law is widely used in the
dynamic case, i.e.,

(o) = KPZ/S, (79)

where o is the relative approach of the two bodies, P is the contact force,
and K is the Hertz constant. For particular geometries, such as two

cylinders in contact with their axes parallel, the Hertz law may be approx-
imated by the linear form

o = KgP, (80)

To. investigate the effect of the local deformation at the contact
area, the impact developed by the instantaneous arrest of a moving bea
was analyzed (see Appendix B). A bedm having an initial vel C'tl g
Instantaneously brought to rest at its two ends., At the midpoci)n't yitustlrsikes

Zfstl;;;u:gel\zi‘.ch stif.fness Ks. The impact and the bending stress are functions
ive stiffness Ks/Kb, where Ky, is the stiffnes i e 1y
From Egs. B.13, s of the beam.



1/2
e = cafZ) " o
and y (81)
Io(T) = CI(EIm)l/Z%

Plots of the coefficients CI and Cg at € = —é— are shown in Figs. 10 and 11,

There are double peaks if Ks/Kb is large. If thetwobodies are perfectly rigid

af contact point, i.e., Ks/Kb = », the first peak occurs at T = 0 and is
infinite. This is because it requires an infinite force of zero duration to
bring the beam to rest. On the other hand, if the relative stiffness is
small, the first peak disappears. The second peak of Cy also depends on
the relative stiffness. The larger the relative stiffness, the larger the
impact, as shown in Fig. 12. The second peak occurs when T is equal to

16
I I I I W
T T ]
£ 7 14
[ = b
S i
32 - 2 ol
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—iln 5 g g
= oa Kg /Kp= @ 3 £ 10 -
w — Q
S - g &
E 20 I 10000 < o 98
I 2 8 ]
g 3
Bt 1000~ = = 08 —
5 5 Al
5 55} o
gr 2 0a ]
H 5 g 7
B 100. 53 u
i S| 02 —
f . =] Al
Py L] i e e 5
[} 002 004 006 0 00l 002 003 004 005 006

NONDIMENSIONAL TIME, T NONDIMENSIONAL TIME, T

Fig. 10
History of Impact Developed
by Instantaneous Arrest of a
Moving Beam. ANL Neg.
No. 113-3273 Rev. 1.

Fig. 11
History of Bending Stress at Midspan
Developed by the Instantaneous Ar=
rest of a Moving Beam. ANL Neg.
No, 113-32817.

Fig, 12

Impact on a Spring at Midpoint Developed by the
Instantaneous Arrest of a Moving Beam. ANL Neg.
No, 113-3283.

IMPACT COEFFICIENT, C,

0 | 0 102 3 0% 15 108 107
RELATIVE STIFFNESS, K¢ /Kp
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eriod of fundamental mode of the beam. From F'1g, .11',
- only one peak, except when the stop is rigid;
ller than the second. The difference in the
histories between the bending stress and the iropacticoin &8 from the fact
that it requires a finite time, dependent on the wave velocity, to reach the

maximum response for the bending stress. But if the stop is quit.e rigifi,
a large impact instantaneously and the force is "localized" in

a quarter of the
the bending stress posse€ssSe€s
however, the first peak is sma

it develops
the impact area.

s/Kb is larger than O rigid stop
tance, the energy required to produce
1 fraction of the total energy, and the

Figure 12 indicates that if K
can be assumed. In such a circums
the local deformation is only a smal
assumption of negligible local deformation is justified.

VII, APPLICATION: TUBE-BAFFLE IMPACT

IN EBR-II SUPERHEATER

The method developed earlier in this report is applied to study
tube-baffle interaction in the EBR-II steam superheater. Pertinent data’!

are given in Table I, and a simplified model is shown in Fig. 13.

TABLE I. Data for EBR-II Superheater

Material Croloy (25% Cr-1% Mo)
Tube diameter do = 1.438 in.

di = 1.065 in.
Typical baffle spacing 2 =65 ft
Baffle hole diameter do + 2e = 1.50 in.
Young's modulus E = 26 x 10° lb/in.Z
Material density 0.28 lb/in.3

Mean crossflow velocity =576 ft/sec

e

0.031 in.

Fig. 13

ly 1
= } =
A Simplified Model of Tube Baffle in EBR-IL
Superheater. ANL Neg. No. 113-3290.
6.5 ﬂ.‘-—l‘— 6.5 ft.

The distributed transverse force is induced
and can be approximated by

by vortex shedding

Fx,t) = 1CipUPd, sin ut. (82)
The distribution of cros sflow velocit
e?tpected to be uniform. To deter
tion, the velocity is expressed in

y along the length of the tube is not

mine the effects of nonuniform distribu-
the form



U(x) = U3f(x). (83)
The distributed force can now be written
F(x,t) = (3CkpUsdy)f(x) sin wt (84)

and, in dimensionless form, as

Q(e, v) = Rf(€) sin Qr, (85)
where
r - 1 CkoUfdot’
2 EI '
and (86)
1/2
o - (M

The vortex-shedding frequency, w, is characterized by the Strouhal
number

wd 1
M. = =
B 2, L

and is additionally a function of the transverse and longitudinal spacing
between adjacent tubes. For a single tube ) the v?rtex-shedding frequency
is characterized by a Strouhal number of 0.2. For the tube-spacing and
flow orientation in the EBR-II steam superheater, the vortex-shedding
frequency (based on an experimental study by Chen'?) is represented by a
Strouhal number of 0.66.!' The dimensionless forcing frequencies, Q,
corresponding to these Strouhal numbers are 16 (Ng = 0.2; single-tube
value) and 52.8 (Ng = 0.66; tube-bank value), as computed from Eq. 87.

If we assume a lift coefficient of unity (Cx = 1) and use the data of

Table I, Eqs. 86 yield R = 0.230.

The support conditions at the two ends are not known. To better
understand the influence of boundary conditions, both simply-supported and
built-in conditions are assumed and the following cases are studied:

1. Simply-supported tube with uniform flow distribution [f(x) = 1];

¢ = e/tand R/e = 1157.

2]



34

e with nonuniform flow distribution,

e Simply-supported tub

assuming
.omx, = d R/e =
£(x) :%sm e e/Lan /

3. Built-in tub
¢ = 0.81(e/1) and RV

The amplitude-response ¢
ratio of 0.01 is used. The correspon
bendin
are given in Figs. I5-17.

7
(0) Simply-supported tube
i uniform flow

¢ dstnbuton
S
- (b) Simply-supported fube |
W5 with nonunform flow
2 distnbution
2
3 4 t— (c) Built-in tube with —
z uniform flow distibution ©
H
z3 =
]
5
z 2
g 7

‘ % 4

.
S = ——

o 10 20 30 4 50 60 70 80 90 100
NONDIMENSIONAL FREQUENCY, &

Fig. 14. Amplitude-response Curves of Tubes
in EBR-II Superheater. ANL Neg.
No. 113-3272 Rev. 1.
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For a single tube (Q = 16), the stress level is very low; this is be-
cause the forcing frequency is far from the resonant frequency, as shown
in Fig. 14 as operating point 1. However, for the tube bank (Q = 52.8),
the stress is relatively high for the simply-supported tube; this is because
the forcing frequency is almost the same as the resonant frequency, If the
tube is fixed at its two ends, the maximum stress is reduced by about 50%.
This reduction is attributed to the increase in natural frequency of the tube.

A few remarks should be made concerning the responses in this
example: (a) In Figs. 15-17, the curves plotted with solid lines correspond
to point 2 in Fig. 14. At this driving frequency, there is another stable point
(point 3) at which the stress is very small. Whether the tube responds at
point 2 or 3 depends on the increase or decrease of the driving frequency,
as discussed in Section V; the response at point 2 represents the worst case.
(b) The responses for uniform and nonuniform flow distribution are quite
similar. (c) Comparing the responses between simply-supported and built-
in ends illustrates that boundary conditions have a significant influence,

(d) The examples given here demonstrate the method of analysis. The result
is based on the assumption that the lift coefficient Ck is well understood, and
its value has been taken as unity. However, at this time the essential
question remaining is "What is the magnitude of fluid dynamic force when
the fluid is flowing past a vibrating tube?" This must be answered before

the problem of crossflow-induced vibration can be solved completely.

VIII., CONCLUDING REMARKS

1. A method has been presented for studying the dynamic response
of a beam with deflection resistors. This method can be applied to beams
with various boundary conditions. By the same approach, it is easily
extended to other elastic systems such as plate-vibration problems.

2. The stops play an important role for certain ranges of R/e in
which the system possesses the properties associated with nonlinear
vibration. For a small value of R/e, the beam can be treated as one
without stops, and its resonant frequency is Q. For a large value of R/e,
the system becomes a two-span continuous beam, and the resonant fre-
quency is Q,. Within the intermediate range o_f_R/e, the resonant frequency
is amplitude-dependent and is between O and Q.

3. The most unfavorable condition is the coincidence of the forcing
frequency and the natural frequency of the system. In any case, periodic
disturbances near the natural frequency of the system should be suppressed
in order to reduce the amplitude of vibration, e.g., by reducing the span,
increasing the rigidity, or changing the support condition.
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f neglecting the local deformation at the stops
strong; more precisely,
ciated with the local deforma-

4, The assumption 0
is justified, provided the stops are relatively
Ks/Kb > 10*, In these cases, the energy asso

tion is only a small fraction of the total energy.

5. To understand more thoroughly the responseé due to tube-baffle
interaction in the EBR-II superheater, the intrinsic problem to be solved is
the lifting coefficient of crossflow, especially (1) the fundamental vortex-
shedding phenomenon associated with vibrating tubes in a tube bank and

(2) fluid-structure coupling.

6. If either the geometry or the forcing function is not symmetric,
more modes should be included in finding the "gross'" response.



APPENDIX A

Eigenfunctions, Natural Frequencies, and
Related Beam-vibration Data

1. Simply-supported Beam (see Fig. JARTH)

$,(€)

T

8 ,p’_’f
q_bi({) (a)

t

Fig. A.1

Coordinates for (a) Simply-supported and
¢ @) (b)Built-in Beams. ANL Neg. No. 113-3281.

j —~
$.€)
' (b)
1 {._T B
. RSN s N 12

a. No Contact with Stop

Characteristic equation: sinkj = 0

Natural frequencies: Q = kzi, o= ralpn 2 S8 e
Eigenfunctions: a(E) =S S (im€)
gi(3) = 1

b. Having Contact with Stop

T k:
i i
Characteristic equation: tan (7> = tanh <7>
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2

Natural frequencies

sin k/Z
5 s sinh (k;
Eigenfunctions: (e} = =i (ks8) - sinh ( 1/2 if)
1 —k—i
= ™ 1 sin 2
M; = | #(9dE=3 1" 4
i
0 sinh? '2_
1 =
Cni = j; on®i A€
g = k;
sin [2(kj-m] sin [%(kﬁ—ﬂ)] 2k; cos \ -
: 1-<-1 T j ki+m X Tczi +m?
Fixed-Fixed Beam (see Fig. A.1)
a. No Contact with Stop
Characteristic equation: cos (k;) cosh (kj) = 1

Natural frequencies: 0 = k?-l’
Eigenfunctions: cp—l(g) = gosh (ei) o e (i€)
cosh (ki/Z) cos (ki/Z)
9;(0) = 1.239

1
il f @ (€) dE = —1—[L :
A i oo tE (ki/z) i sinh (ki) +1

1 1 .
+ m [k—l sin (k;) + 1]

. .
= [tanh (ki/2) +tan (ki/Z)]



Having Contact with Stop

Characteristic equation:

Natural frequencies:

Eigenfunctions:
1 -2
-/ ER s = My

= fol 9, ¢; d€

cos (I:i/Z) cosh (Ei/Z) =1

i|1|2|3 4|5

ki | 9.46 | 15.7 | 22.0 | 28.2 | 34.6

e LR
0 - i@

5.(8) = cosh (ki)  cos (kif)
8(8) = Cooh (k/4) ~ cos (ki/4)

1 1 1 =
cosh (k. /2) kp + K; <Smh[ 2 (kn“‘l)]

tanh (K;/4) {cosh [% (kn + Ei)} § 1})

1 1 X 1 -
* Cos [E7z) &, oF Ei<51n[z(kn+ki)]

kn+k1

- i
2 tan (ki/4) —2—_—Z{kn

s (Ei/4){cos [%(knﬁq)] - 1}) .

tanh (kn/Z) sin (1—<1/2)

- ki cos (ki/z) T m}

- 2 tanh (kj/4) : ['kn tan (kn/2) sinh (ki/2)

2 T2
kn Ay 1’(1

+ K%
n 1

ki cosh (ki/z) i m]

1_2 [sinh (Ei/z) - tanh (Ei/‘}) cosh (l_q/Z)

51
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+tca:: ((Ei 4) + sin (ﬁi/z)]

2kn

+1€_+—1—<—Zi [tanh (Ei/‘l) tan (kn/z) sinh (El/Z)

4 tan (kn/2) cosh (ki/2) - tanh (kn/2) cos (Ki/2)]

+ Cni
where
1 1 1 k
S o, il = IS
tni = 3 [cosh (kn/2) * Cos (kn/Z):l iR g
and

1 1 1
L= = i =
°ni 7 Cosh (kp/2) k; - Ky <smh [2

L (ii/4){cosh[% (T(i-kn)] k 1})
" oos (Ln/z) = ; n (sm[%&i 'kn)]

-tan (Ri/4){cos|:%(ii—kn):| - }) Wi

(ki - kn)]




APPENDIX B

Dynamic Stresses and Impact Developed by
the Instantaneous Arrest of a Moving Beam

When a beam under uniform translation at a velocity u is brought

to rest instantaneously at two ends and hits a spring stop at its midpoint

(see Fig. B.1), an infinite number of
modes of vibration are excited. This

| problem is analyzed to investigate

the stresses produced in the beam
u and the impact at the stop. The field
equations are

41

__________ otw Ow ow Fw
oL == wmteram Pt O
, (B.1)
s L 0 w(0,7) = w"(0,T) = O,
T (BER)
w(l,7) = w"(1,7) = 0,
Fig.B.1. A Moving Beam Striking a Spring Stop
at Midspan, ANL Neg. No. 113-3288. wh($, 1) = 24Rgw(3,T), (B.3)
w(0,T) = 0,
and (B.4)
w(0,7) = v,
where
a2
= (ﬁ) uL,
(B75)

R, = Kp/Ks,

and Ky, is the stiffness consta
method of analysis, the solution is written

w(E,T) = Z a; () ei(E).

Since u is uniform acros
are excited, The field equations indicate that the m

are

nt of the beam (Kp = 48 EI/L3). With a modal

(B.6)

s the length of the beam, only symmetric modes
ode-shape functions
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cos (ki/Z)

o= sinh (kig),
Conn(ki/2)

(B.7)
¢;(8) = sin (k%) -

where kj is the solution of the equation
3
o

tan (k;/2) = tanh (k;/2) - T

(B.8)

ted for several cases, as listed in Table B.I.

L A the properties of normal modes, one

Substituting Eq. B.6 into B.1 and using
finds for the normal coordinates

d; +2Ci4; + By = 0,

o (B.9)
and
Si
qi(O) = EV,
where
1 b
M; = [ (9 ag,
0
T
s; = w9 ag,
0 r (B.10)
195 B
5 o eaTe iy
Ci 2 20
and
9k = kzi' )

TABLE B.I. Eigenvalues for a Simply-supported Beam
with an Elastic Support at Midpoint

RS
K 1 10 100 1,000 10,000 100,000
Kk, 1.8612 2.7568 3.7215 3.9062 3.924 3.9263
k, 4.7267 4.8614 5.9182 6.9436 7.0567 7.0673
k3 7.8570 7.8855 8.2099 9.7840 10.173 10.206
Ky 10.996 11.006 11.117 12.323 13.267 13.343
ks 14.137 14.142 14.192 14,840 16.325 16.478
ke 17.279 17.281 17.308 17.638 19.327 19.609
Kk, 20.420 20.422 20.438 20.623 22.250 22.735
kg 23.562 23.563 23.573 23.688 25.080 25,857
ko 26.703 26.704 26.711 26.787 27.858 28.971
ko 29.845 29.845 29.850 29.904 30.670 32.078




The solution to Eqs. B.9 takes one of three forms, depending on the mag-
nitude of (;

(" = ot e
q;(T = — vq.(T), Bl
i M; 9; ( )
where
& 1 -C:Q.T
for ; > 1, e & sinh («/gi - lﬂiT), 1
¢ -1
for g = 1, (1) = e L \ (B.12)
or
e 1 S0
e e g = ————— G sin( [ gﬁniw).
/ 2
b= G ]
The bending stress of the beam and the impact at spring are
E 1/2
glE 1) = Cc(Tm) zu
and : (BSLs)
(1) = Cy(EIm)"?>
o7) 1( m) 7
L
where
% By 1
Co = Zqi(T)CPi'(E)I\—Af
: i
and >, (B.14)

2o ()i

dl

Cr

The bending stress at a given percentage of distance from the stop
is independent of the length of the beam; the impact varies inversely with the
length of the beam, This is because when the beam is shorter, the natural

frequencies will be higher and the time required to bring the beam to stop

will be shorter, thus requiring a larger force at the stop.
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